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I. INTRODUCTION 

A. Nature and Purpose of the Investigation 

The gas phase reactions of the halogens have been of 

interest since the early work of Bodenstein (1,2,3). In 1934 

Ogg (4) was the first investigator to study the reactions of 

the alkyl iodides with hydrogen iodide. Shortly thereafter 

Ogg and Polanyi (5), and Clark, Pritchard, and Trotman-

Dickenson (6) studied the exchange of iodine with the alkyl 

iodides. Some of these reactions served as classic examples 

of the elucidation of reaction mechanisms. 

In 1961 Benson and O'Neal (7) and Sullivan (8)-predicted, 

on the basis of Ogg's data for the reaction of methyl iodide 

and hydrogen iodide (4), that the results could well be 

interpreted in terms of an atomic mechanism rather than Ogg's 

mechanism. Ogg had suggested a combination of a bimolecular 

reaction of methyl iodide with iodine and a unimolecular dis­

sociation of the iodide into a methyl radical and iodine atom. 

Flowers and Benson (9) repeated the experiments and demon­

strated the atomic mechanism conclusively. Similarly, it was 

believed in some circles that the bimolecular mechanism pro­

posed by Bodenstein for the formation of hydrogen iodide from 

iodine and hydrogen could be discarded in favor of an atomic 
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mechanism. The recent study by Sullivan (10), although unable 

to discriminate between two alternative atomic mechanisms, 

leaves little doubt of the invalidity of Bodenstein's mechan­

ism. At this point it appeared obvious that perhaps a re­

examination of the isotopic exchange reactions was in order. 

The work of Ogg and Polanyi (5) was undertaken to deter­

mine whether a free atom substitution proceeds by an 3̂ 2 

mechanism with optical inversion of the alkyl halide molecule. 

Sec-butyl iodide was chosen for the experiment because it is 

the simplest and most stable of the optically active iodides. 

Low temperature work in the region 150-180°C gave rates that 

were sharply dependent on the surface-volume ratios of the 

reaction vessel. This heterogeneous reaction had a low acti­

vation energy of approximately 8000 cal./mole. Since the 

homogeneous exchange was expected to have a considerably 

higher activation energy the temperature of the experiments 

was raised in hope of having the homogeneous reaction pre­

dominate. This did not solve the problem, and it was then 

decided to begin the experiment in the absence of iodine and 

raise the temperature to the point where decomposition of the 

sec-butyl iodide provided iodine for the racemization. The 

results appeared to confirm the Ŝ 2 mechanism and gave an 
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activation energy of about 32.2 kcal./mole for the inversion 

step. 

In 1954, Clark, Pritchard, and Trotman-Dickenson (6) 

attempted to restudy the problem using methyl iodide and 

1*̂ 1 iodine tagged with radioactive I . It was expected that 

the increased stability of methyl iodide over the sec-butyl 

iodide would allow studies of the system at much higher tem­

peratures where the homogeneous exchange would predominate 

without the onset of decomposition. However, even at temper­

atures up to 375°C curvature on the Arrhenius plot remained. 

A straight-line Arrhenius plot for the heterogeneous exchange 

resulted from packing the reaction vessel. These results are 

illustrated in Figure 1. The dashed line indicated that the 

activation energy for the homogeneous exchange was greater 

than the 32.2 kcal./mole reported by Ogg and Polanyi. However, 

the curvature of the dashed line suggested that the homogene­

ous exchange could not be isolated at temperatures at which 

methyl iodide is stable. The apparent activation energy of 

the heterogeneous reaction, which was independent of iodine 

concentration, was given as 17 kcal./mole. 

Schmied and Fink (11) are the only investigators to re-

study this problem up to the present date. These workers 

carried out the exchange of methyl iodide with tagged iodine 
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Figure 1. Arrhenius plots of the CH3I-I2 exchange as 
studied by Clark ̂  (6) 



www.manaraa.com

5 

in the temperature range 60-140°C. By using various preheated 

surfaces they claimed to have raised the activation energy of 

the heterogeneous surface reaction to the point where the 

homogeneous exchange predominated. With this technique they 

concluded that the homogeneous exchange was bimolecular, with 

an activation energy of 9000 cal./mole, and proposed the possi­

bility of a four-center intermediate. They further suggested 

that the rate expression found by Clark et (6) , which was 

half order in iodine, was an intermediate value between zero 

order for the surface reaction and first order for the bimolec­

ular mechanism. They also suggested that the process in the 

high temperature region was not a free atom reaction but a 

free radical reaction that proceeds by attachment of the 

methyl radicals to the walls of the reaction vessel. As evi­

dence for the simultaneous existence of both the bimolecular 

and free radical mechanisms Schmied and Fink cited the results 

of Ogg (4). In light of the fact that Ogg's mechanism is no 

longer accepted it seemed that these conclusions were question­

able . 

In addition. Flowers and Benson (9) demonstrated the 

following mechanism for the CĤ I-HI reaction: 

12-21, (Keq), 
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1 
I + CK3I îi CH3 + I2, 

-T.- 2 

3 
CH3 + HI = CH3I + H. 

They found that step 1 had an activation energy of approxi­

mately 20 kcal. When combined with the dissociation energy 

for the production of one iodine atom it should yield an over­

all activation energy of approximately 38 kcal. for the iso-

topic exchange reaction. This value would be in agreement 

with the results of Clark et aj.. (6). However, the rate 

determining step is the formation of a free radical rather 

than an Sj,j2 inversion of the methyl iodide. 

In summary, the isotopic exchange of iodine with methyl 

iodide poses the distinct problem of isolating the homogeneous 

exchange without the appreciable decomposition of methyl 

iodide. It was decided that the best technique available for 

assuring this condition was the shock tube method. 

B. The Shock Tube 

Although the physical possibility of shock waves was 

first realized in 1860 by Eamshaw (12), and the first safe and 

practical shock tube constructed by Vieille (13), in 1899, the 

development of the shock tube as an analytical tool in chemis­
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try was extremely slow. The interest in explosives and super­

sonic flow caused renewed activity in the field during World 

War II. Yet, the instrument was not used as a chemical tool 

until 1953, when Carrington and Davidson (14) studied the dis­

sociation of N2O4. Since that time the use of the shock tube 

in chemical kinetics has become widespread. 

The advantages of the shock tube technique over many of 

the classical methods are numerous. Primarily, gases ahead of 

a shock wave are heated uniformly and almost instantaneously 

on passage through the shock front. Thus, reactants can be 

brought to reaction temperatures with virtually no heating 

time and the entire gas sample is brought to the same tempera­

ture. Secondly, because of the extremely short reaction times, 

virtually all surface reactions can be considered eliminated. 

Kevorkian, Heath, and Boudart (15) have demonstrated from 

simple kinetic theory that during the short duration of a 

reaction in a shock tube only a minute fraction of molecules 

in the gas could conceivably migrate to the surface. This 

feature is of obvious importance in the interpretation of data 

from the shock tube study of the exchange of iodine with 

methyl iodide. It is to be expected that any significant ex­

change which takes place at moderate temperatures could not be 
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explained on the basis of a mechanism which suggests catalysis 

on the shock tube walls. 

It would have been impossible to study an isotopic ex­

change reaction in a shock tube were it not for the advent of 

the single-pulse shock tube. First designed by Click, Squire, 

and Hertzberg (16) and later refined by Lifshitz, Bauer, and 

Resler (17), this new technique assures that the gases under 

study, once heated to reaction temperature, are never reheated 

but are instead cooled back to the initial temperature. The 

extent of reaction can then be determined classically after 

removal of the reactants from the shock tube. Thus, reactions 

which cannot be followed in situ can be studied in this shock 

tube. 

C. Symbolism 

The range of symbols used in shock tube theory varies 

widely in the literature. To avoid confusion, a set of con­

cise symbols is listed at this point. On the whole, this 

symbolism tends to conform with that of Glass and Hall (18). 

1). u Velocity of a gas in laboratory coordinates, 
.̂e., with respect to the shock tube. 

2). V Velocity of a gas with respect to a moving 
reference in the shock tube. 
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3). UI,UR Laboratory velocities of incident and 
reflected shocks, respectively. 

4)'. Mi Mach number of incident shock wave. 

5). T Temperature, in degrees Kelvin. 

6). P Pressure. 

7) . P Density. 

8) . R Universal gas constant. 

9). p̂>̂ v Specific heats at constant pressure and 
volume, respectively. 

10). y Ratio cp/ĉ . 

11). a Ratio Y+I/Y-1-

12). 3 Ratio Y-1/2Y. 

13) . a Speed of sound. 

14). s Specific entropy. 

15). e Specific internal energy. 

16). h Specific enthalpy. 

17) . Standard molar enthalpy function. 

18). M Molecular weight. 

19) . Tlj Ratio of density of gas i to that of gas 

20) . Fij Same as above, for pressures. 

21). Tij Same as above, for temperatures. 

22) . Same as above, for sound speeds. 

23). Ratio of laboratory velocity of gas i to 
sound speed of gas j. 
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24). V̂ j Ratio of relative velocity of gas i to 
sound speed of gas j. 

25). X Mole fraction. 

26). 0 Degree of dissociation. 

27). F Fraction of exchange. 
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II. SHOCK TUBE THEORY: EXPERIMENTAL DEVELOPMENT 

A. Fundamental Shock Tube Behavior 

Before discussing any technical aspects of shock tube 

technology or theory, a brief nonmathematical description of 

shock tube behavior is presented here. The geometry of a 

shock tube is usually that of a long, straight, narrow cylin­

der. By using a straight shock tube the flow problem is re­

duced to one dimension, i,.̂ ., any thermodynamic or dynamical 

variable is a constant throughout any given plane perpendicu­

lar to the tube axis. Thus, processes in a straight shock 

tube can be described by the simple x-t diagram of Figure 2. 

The x-coordinate represents position in the shock tube while 

the t-coordinate measures the time from the initiation of the 

experiment. Prior to the experiment a diaphragm is placed at 

the point A which isolates the two sections of the shock tube. 

The reactants, diluted by an inert gas, are admitted into the 

longer end of the tube and referred to as gas 1. The other 

section, called the driver section, is filled with inert gas 

at a significantly higher pressure. The inert driver gas is 

referred to as gas 4. After the diaphragm is ruptured a shock 

wave is formed which travels into the low pressure section. 

The path of the shock wave is denoted by the line AB. Gas 2 
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Figure 2. Phenomena in the single-pulse shock tube 
illustrated in x-t coordinates 



www.manaraa.com

13 

consists of the reactants which have been heated and compressed 

by the shock wave and are travelling in the same direction as 

the shock. At the time the shock wave is formed an expansion 

wave is simultaneously generated into the driver gas. Gas 3 

represents the inert driver which has been cooled and expanded 

by the expansion wave. Between gas 2 and gas 3 there exists a 

discontinuity, known as a contact surface, across which there 

is no mass flow. The contact surface traverses a path in x-t 

space as shown by line AC. The pressure and gas velocity are 

continuous across the contact surface although the remaining 

thermodynamic variables are not. 

in the chemical shock tube the reactants are not brought 

to reaction temperature by the incident shock wave. Instead, 

the final heating is done by the reflected shock wave, denoted 

by line BC. Normally, the temperature behind the incident 

shock wave is several hundred degrees lower than the tempera­

ture behind the reflected shock wave and thus the extent of 

reaction in gas 2 is negligible. The reaction is then quenched 

by an expansion wave generated from point C. Under special 

conditions, discussed in Section III-A, the interaction of a 

shock wave and a contact surface results in the formation of 

this expansion front, denoted by line CE. To make the cooling 
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the most efficient the length of the driver section is adjusted 

such that the reflected far-end expansion wave coincides with 

the expansion wave formation at the point C, resulting in their 

reinforcement. This results in a rapid cooling, determined in 

several cases by Lifshitz et al. (17,19) as 10̂  deg./sec., 

although it is by no means as rapid as the heating. All the 

significant reaction thus takes place in the slashed region 5. 

Before removing the reactants from the shock tube it is neces­

sary to insure against their being reheated by another reflec­

tion of the shock wave. This is discussed further in Section 

II-C. At this point the reactants are in a suitable state for 

removal and analysis. 

B. Shock Wave Generation 

The known methods of shock wave generation are numerous 

and depend on the type of experiment being studied and the 

temperatures or pressures desired. Rather than being given an 

immense treatise, the reader is referred to the excellent re­

views of Bradley (20) and Greene and Toennies (21). 

The use of explosives to generate shock waves is both the 

oldest and most dangerous technique known. When studying the 

effects of very high pressures on liquids it is necessary to 

deliver an extremely strong shock to the liquid. Unlike their 
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effect in gaseous systems, shock waves in liquids produce high 

pressure jumps with only moderate temperature elevation. For 

this purpose the explosive driver technique has been well 

developed by several workers (22,23,24). For the temperatures 

required for chemical reactions it is not necessary to resort 

to such violent methods. 

The study of chemical kinetics is normally carried out 

with the use of thin diaphragms. The diaphragms are ruptured 

either by puncturing with a needle or by building the pressure 

of the driver gas until the diaphragm bursts spontaneously. 

Aluminum or brass foils and plastic films are the most fre­

quently used diaphragm materials. 

Metal foils, with the employment of rigorous standardiza­

tion techniques, can provide better reproducibility than the 

plastic films for the spontaneous bursting process. Metal 

diaphragms are usually scored so that they burst in a petal 

pattern and the petals flatten out against the side wall. 

Without scoring, these diaphragms might leave fragments extend­

ing into and interfering with the flow. Obviously, a standard 

scoring method must be used if reproducibility is desired. 

The bursting pressures of various scored and unscored metallic 

and plastic diaphragms have been tabulated by Bradley (20, p. 
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115) and Greene and Toennies (21, p. 122). 

Plastic films, though generally not available in as many-

thicknesses as the metallic foils, are preferable in chemical 

kinetics studies where extremely high temperatures are not 

necessary. Cellophane, known as a 'shatter'-type material, 

received early popularity in shock tube experiments and its 

properties were well outlined (25,26). Upon bursting, cello­

phane shatters into many small fragments. Because the dia­

phragm effectively disappears, the shock wave is formed almost 

instantaneously. This material suffers from the fact that the 

shock tube requires extensive cleaning after each experiment. 

Mylar, on the other hand, is known as a 'tear'-type diaphragm. 

Upon bursting it tears and wraps itself along the shock tube 

wall. Unfortunately, the slowness of the tearing process re­

sults in the formation of the shock front a significant dis­

tance from the diaphragm location. This is compensated by 

having a long reactant section in the shock tube so that most 

of the gas sample is heated by a well formed shock wave. In 

view of the fact that the shock tube used in this study had 

extra shielding because of the radioactive gases used, a 

vigorous cleaning after each experiment was not practical and 

it was decided that Mylar film be used. To add flexibility. 



www.manaraa.com

17 

a plunger was used to burst the diaphragms at pressures slight­

ly below the spontaneous bursting pressure. 

C. Quenching Technique 

As mentioned previously, when a reaction cannot be fol­

lowed in progress it is necessary to quench the reaction in 

the shock tube before removal of the reactants for analysis. 

Click, Squire, and Hertzberg (16) were the first workers to 

develop this technique. They attached an evacuated tank, 

separated by a second diaphragm, onto the end of the driver 

section. This diaphragm would be at the point x = 0 in Figure 

2. The diaphragm was ruptured when the far-end expansion wave 

reached it at point D, causing a reinforcement of the expan­

sion wave denoted by line DC. The tank also served to attenu­

ate the reflected shock wave from point C by trapping it in 

the tank. 

An improved shock tube was designed and tested by Klepeis 

(27). The cooling effect was caused predominantly by the 

interaction of the reflected shock wave and the contact surface 

to produce a rarefaction. In addition, a tank was directly 

connected to the shock tube, perpendicular to the tube axis. 

The tank, added on the downstream side of the diaphragm, 

effectively attenuated the reflected shock wave and prevented 
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reheating of the reactants. Moreover, Klepeis determined that 

the incident shock wave and the reflected far-end expansion 

wave were only slightly affected by the presence of the tank. 

There are several advantages of this design over that of Click 

et al. Primarily, the auxiliary apparatus needed to burst two 

diaphragms at a given time interval is quite formidable. 

Secondly, in the Klepeis design the dump tank is at the same 

pressure as the reactant section and this removes the neces­

sity of accessory valves, diaphragms, and vacuum lines. Fi­

nally, the Klepeis tube gives a higher cooling rate than 

available in the other design. In view of the successful use 

of the simpler tube by many workers in the field, it was 

decided that a tube of similar design would be used for the 

exchange experiment. The design is illustrated in Figure 9 

of Section IV-B. 

D. Measurement of Shock Parameters 

A full development of shock tube theory, outlined in 

Sections III-A and III-B, yields a set of four equations in 

five unknowns. These five variables are the pressure and 

density or temperature on both sides of the shock wave and 

the velocity of the gas with respect to the shock front on 

either side of it. A measurement of any one of these quanti-
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ties exactly determines the final state behind the shock wave. 

However, measurements of this type are difficult because reac­

tion times in a shock tube are only of the order of a tnilli-

s econd. 

Piezo-electric transducers have been extensively used for 

direct pressure measurement. Transducers operate on the prin­

ciple that the charge distribution on the faces of a piezo­

electric crystal is dependent on the pressure on the crystal. 

These crystals are very sensitive to extremely rapid pressure 

changes and this property will be discussed shortly. However, 

while attempting to measure a constant pressure for any sig­

nificant time the charge on the crystal faces decays and the 

resulting pressure measurement is very inaccurate. 

Numerous workers have used the Mach-Zehnder interferometer 

to make direct density measurements. This technique is based 

on the principle that a change in density of a gas results in 

a change in its refractive index and thus a change in the op­

tical path length. Combining a reference beam with the beam 

through the gas sample it is possible to obtain interference 

fringes. The number of fringes will depend on the difference 

in phase of the two beams. Unfortunately, the interferometer 

is sensitive to small density changes only when the density of 
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the gas sample is very large. In most chemical kinetics 

problems this condition does not exist. 

In kinetics studies the variable which is most signifi­

cant for data interpretation is, of course, the temperature. 

Efforts to directly measure temperatures behind shock waves 

have been attempted since the development of the sodium line-

reversal technique for the determination of flame temperatures 

(28,29). Sodium-line radiation, when passed through a gas 

containing sodium vapor, causes the atoms to emit or absorb 

radiation depending on whether the temperature of the gas is 

higher or lower than that of the source. The intensity of the 

emission or absorption will depend on the magnitude of the 

temperature difference and the concentration of the sodium 

vapor in the gas. Since the sodium vapor concentration is 

difficult to estimate, it is necessary to carry out a series 

of identical shocks using various lamp temperatures until one 

is found at which the line intensity is not affected by the 

gas. This can be a terribly tedious operation. 

It was mentioned earlier that measurement of the velocity 

of the gases on either side of the shock wave, with respect 

to the shock wave, would determine the final state of the 

system. It is shown in the next section that the shock wave 
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velocity is simply related to the gas velocities. Thus, a 

measurement of the shock wave velocity is sufficient to com­

pletely determine the final state of the system. Piezo­

electric transducers have proven to be very sensitive to the 

sharp pressure changes brought about by the passage of a shock 

through a gas. The placement of two or more transducers in a 

shock tube, set at calibrated distances apart, results in a 

very accurate determination of the shock wave velocity. The 

ample demonstration in the literature of the effectiveness of 

this technique (16,17,19,30,31) resulted in its adoption in 

the shock tube designed for the iodine exchange. 

It is necessary to make an additional remark at this 

point. Ideal shock tube theory leads to the result that a 

measurement of the incident or reflected shock wave velocity 

will determine the same final state behind the reflected 

shock. However, experimentally, many workers have found this 

condition unfulfilled (32,33,34,35). In studies where reflec­

ted shock temperatures would be in the region 1500-3000°K, the 

actual temperature was found to be 30-60° lower than that cal­

culated from ideal theory. This disagreement becomes espe­

cially severe where reactions involving large exchanges of 

heat occur. The reaction will generally lead to the reflected 
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shock wave being accelerated. This problem can be avoided by 

using the incident shock as a basis for calculations, since no 

reaction is known to take place behind it. 

E. Measurement of Progress of Reaction 

Measurement of reactions in progress can be studied by 

most spectroscopic methods when applicable to a particular 

problem. The time-of-flight mass spectrometer, first applied 

to shock tube investigations by Bradley and Kistiakowsky (36), 

is particularly useful for the detection of unstable inter­

mediates. For problems where the cost of a time-of-flight 

mass spectrometer is prohibitive and where there are no char­

acteristic absorption or emission bands, standard laboratory 

techniques must be employed. These range from volumetric 

analysis to gas chromatography. For the exchange of iodine 

with methyl iodide, the ease of procurement of the Y-ray 

emitter and the availability of excellent counting equip­

ment dictated the technique to be used. 
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III. SHOCK TUBE THEORY: THEORETICAL DEVELOBffiNT 

A. Ideal Shock Tube Theory 

The theory of shock tube operation has been known since 

the end of the last century. Unfortunately, few authors have 

succeeded in providing a concise mathematical description of 

all the phenomena that occur in the single-pulse shock tube. 

Partial descriptions are available in the texts by Bradley 

(20), Greene and Toennies (21), and Wright (37). The simplest 

and most complete work on the theory of shock tube processes 

is that by Glass and Hall (18). Their work is most highly 

recommended for the reader desiring an intimate familiarity 

with the subject. Basic fluid mechanics is outlined in many 

excellent texts (38,39,40). 

In studying chemical reactions in a shock tube it is 

standard procedure not to consider the effects of heat conduc­

tion or viscosity. Certainly, in the temperature and density 

regions of kinetics studies, their contribution would be 

negligible. In addition, it is assumed throughout that all 

the gases obey the ideal gas law. This approximation is valid 

so long as the pressures of the reactants are low, which is 

the condition that prevails in the shock tube. In this section 

two additional conditions are applied. The gases are consid­
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ered to undergo no reaction, ionization, or dissociation, and 

their specific heats are taken as Independent of temperature. 

These restrictions are removed in the next section. 

There are two basic laws necessary for the development of 

shock tube theory. The first, which is an expression of the 

conservation of mass, is known as the equation of continuity. 

In vector notation it is written as follows: 

i£ + V- pv = 0, (1) 
ot 

where ̂  is the gradient operator and v is the fluid velocity. 

The second law, the fluid mechanical equivalent of Newton's 

Second Law, is sometimes written: 

p f = - V P -  ( 2 )  

This form is not convenient to use because it contains the 

total derivative operator, d/dt, rather than the local deriva­

tive operator, &/dt. However, one employs the chain rule (39, 

p. 56) to yield: 

Substituting in Equation 2 yields the equation commonly re­

ferred to as Euler's equation: 
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Steady flow refers to the situation in which all the variables 

of the flow are constants at any given point in the flow. In 

this circumstance the local time derivatives of Equations 1 

and 4 vanish. 

To describe the change of state of a gas passing through 

a shock it is convenient to treat the shock front as a surface 

of discontinuity. In reality, the thickness of the shock front 

is only several mean free paths and the approximation is valid. 

Then, conditions of steady flow may be considered to exist on 

both sides of the shock front. The continuity equation then 

becomes: 

V* pv = 0. (5) 

Since the flow in a shock tube is in one dimension only, one 

may write: 

pv = constant. (6) 

Thus, the rate at which mass enters the shock front is the 

same as the rate at which it emerges. Before discussing energy 

conservation it is necessary to recall two fundamental thermo­

dynamic relations: one, the Maxwell equation, 

h = e + p/p; (7) 

the other, the enthalpy equation for isentropic processes, 

dh = dp/ p. (8) 

The energy density, abbreviated ED, consists of the kinetic 
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energy and the total internal energy. Hence, 

ED = %pv̂  + pe = %pv̂  + ph - p, (9) 

by Equation 7. The local time change is then written as: 

A(ED) . (W%v2)|i + ptr.f + - |E . (10) 

The last two terms vanish by virtue of Equation 8. If one now 

substitutes Equations 1 and 4 into the last equation, then the 

local time rate of change of energy density becomes: 

(̂ED) = -(h+%v̂ ) V*P^~^*Vp " (v• • (11) 
ot 

From vector analysis one draws on the following identity (39, 

p. 73): 

V )v = %\/v^ - . (12) 

Using this relation, and substituting Equation 8 again, one 

obtains: 

— (ED) = -(h+ %v̂ ) V* - p̂ 'Vh - pv*%Vv̂  
Bt 

= - ̂  ' p̂ (h 4-%v̂ ) . (13) 

Consequently, the change in energy in a given volume may be 

written as follows: 

— r (%pv2+pe)dV = - r p̂ (h+%v̂ )dV 
8t J 

~ ~ ̂  p'̂ (h+%v̂ ) *dS, (14) 
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where the last relation is the result of the application of 

Gauss' divergence theorem. The right hand side of Equation 

14 signifies that the rate at which energy crosses the volume 

boundary is given by the vector, 

pv(h + %v̂ ) . 

Since energy must be conserved in a shock system, this vector 

must be the same on both sides of the shock front. Reducing 

the equation to one dimension and making note of Equation 6, 

one obtains : 

h + %v̂  = constant, (15) 

across a shock wave. Momentum flux is treated in the same 

manner, by finding the rate of change of the momentum density 

in a fixed volume. This may be written as: 

— (p̂  = * As. + p__È2 
ôt ôt ôt 

= -"vCV'p̂ ) - p(̂ *V)̂  " VP» (16) 

by virtue of the continuity equation and Euler's equation. 

The first two terms are equivalent to the dyadic expression 

(39, p. 69), 

- V ( pw). 

Now, taking the integral over all the fluid, one writes: 

 ̂ dV = -J*̂ p dV - J* V (17) 
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The divergence theorem reduces Equation 17 to: 

pv dV = -  ® p dS -  ® pv^'dS .  (18) 

Thus, the rate at which momentum crosses the surface is given 

by a tensor. However, the shock tube is a one dimensional 

structure and the conservation of momentum is simply written: 

Equations 6, 15, and 19, together with an equation of state 

and an enthalpy function are the five basic equations of shock 

tube theory. All that is required for a complete description 

of the state behind a shock wave is a single measurement, as 

discussed earlier. However, these equations do not provide 

any insight into the functional dependence of the thermodynam-

ic and mechanical parameters upon one another. By proper 

algebraic rearrangements of these relations one can perceive 

the range of conditions available behind shock waves of vari­

ous strengths. 

It is convenient to discuss gaseous flow in a shock tube 

in terms of several different coordinate systems. All the 

coordinate systems used in the discussion are illustrated in 

Figure 3. The subscript convention is consistent with that of 

Figure 2. Instead of using vector notation throughout the 

derivation, it is to be understood that a velocity is positive 

0 
p + pv = constant. (19) 
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Figure 3a. Incident shock coordinate systems 
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Figure 3b. Reflected shock coordinate systems 
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whenever it is in the same direction that it has been assigned 

in Figure 3. This simplifies the notation because the direc­

tions assigned to the velocity vectors are in anticipation of 

the results. Consequently, the values of the velocities are 

consistently positive. 

The conservation equations across the incident shock are 

rewritten as follows: 

Pl̂ i = P2̂ 2> (20) 

hi + = ̂ 2 + (21) 

and 2 2 
Pl + Pivi = P2 + P2V2 • (22) 

In addition it is required that the gases be perfect and 

polytropic: 

p = pRT/M, (23) 

h = CpT (+ constant), (24) 

where the constant is taken as zero and Cp is independent of 

temperature. Furthermore, one makes use of the following 

definition of the sound speed in a gas: 

a = (Yp/p)̂  = (YRT/M)̂ . (25) 

The substitution of Equation 20 in Equation 22 yields: 

(plVi)2 = (P2^2)^ = ——^^ . (26) 
1/P2 - 1/PI 
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Now, by rearranging Equation 21 one finds: 

1̂-̂ 2 = %(V2̂ -V2̂ ) = %(pi-p2)( -L + ) . (27) 
P2 Pi 

Also, from Equations 23, 24, and 25 one may write: 

hi-h2 = Cp(Ii-T2) = l(̂ ) - g) 

Y /Pl _ P2\ 

Y-llpi P2j 
(28) 

where use was made of the identity Cp-Ĉ  = R/M. Also, for 

simplicity, the subscripts which should appear on the variable 

y, and therefore on ̂  and 0, will not be included with the 

explicit understanding that the specific heats are independent 

of temperature. Equating the last two expressions, and per­

forming the necessary algebra, one finds: 

Rearrangement of this expression yields the following result: 

cy r., - 1 

'21 
rj —  I  

21 

P91 =  ̂ . (30) 
a - To 

Finally, using the ideal gas law, one derives these multiple 

identities: 

Po t  2 a + P 
= P21 
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Thus, the temperature jump behind a shock wave increases 

indefinitely with increasing ̂ 21* However, an analysis of the 

initial pressure ratio across the diaphragm, P41, and its rela­

tionship to P21 would demonstrate that for a given system P2I 

has a finite limit even for infinite P41. As a result, T21 

also has a finite limit which is dependent on the nature of 

the gases on both sides of the diaphragm. For large P21, F21 

approaches an upper limit of Qf. In Figure 4 plots of T2I and 

r 21 are given as functions of P21 for a polytropic gas. In 

passing, it is interesting to note that the entropy change 

across the shock front is given by: 

. s, = Cvlnf̂ ) = 1 • (32) 

Since the velocity of the shock wave is measured in a 

real system, not the pressure, it is instructive to change the 

functional forms obtained above. From Equation 26, the gas 

velocity ahead of the shock may be written: 

v,2 = J-/_ZllZ2_y Pi / 1-^21 Y (33) 

\ 1/P2 - i/pi/ Pi \i/r2i-1 / 

Substituting Equations 25 and 29 one obtains: 

2 _ /I + °'I'2l\ 
— (-TTT-j-

The expressions of and P are simply related by: 

(34) 
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Figure 4. Variation of incident shock temperature and density ratios as 
a function of the pressure ratio 
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a + 1 = 1/9 and a - 1 = l/yP. (35) 

Thus, Equation 34 may be simplified to: 

2 , 1 + »P21 . l±f!21 . (36) 
Y(e-l) 1 + a 

The last equation illustrates the simple fact that a shock 

wave always travels faster than the sound speed in the gas 

ahead of it. Since vi and Uj are identical, the Mach number, 

M%, is identical with Vu» This leads to the important result 

2̂1 = ̂  ̂  ̂ - i - (37) 

Using Equation 26 once more one finds: 

2 (« + 
V21 = (ĥ )(14«P2i) • (38) 

One converts this result to the laboratory system to obtain: 

(of-1) (P21-I) 
U21 = V21 - Vii =  ̂, (39) 

[(1+ĉ )(1-HVP2I) P 

after much algebra. Obviously, this term is positive and it 

indicates that the gas behind the shock wave is moving in the 

same direction as the shock wave. A comparison of Equation 39 

with Equation 36 shows that the gas is not travelling as fast 

as the shock. Using Equation 37, Equations 29 and 31 can be 

rewritten in the following forms: 
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[(l+a)Mî -l]ra-l + Mx̂ J 

To contrast with the temperatures and densities of Figure 4, 

a plot of the incident shock Mach number over a range of shock 

pressures is given in Figure 5, as calculated from Equation 36. 

To ascertain the state behind a reflected shock wave one 

must have a boundary condition for the end wall reflection. 

Simply stated, the gas behind the reflected shock wave must be 

at rest since the gas initially at the end wall was at rest. 

This condition has been included in the reflected shock coor­

dinate systems of Figure 3. By analogy with Equation 39, one 

may write the following for the flow velocity behind the re­

flected shock wave: 

(*-1) (P52-I) 
V52 ~ X, • (42) 

r(l+ûr)(l+ffP52)P 

Since V5 and U2 are identical, division of Equation 39 by 

Equation 42 yields: 

A21 = — . (43) 
V52 I.P52 - iJLl+apgiJ 

From the definition of A21 by Equation 31, one obtains the 

following identity: 

P r̂ULilil ' \ (44) 
Ll + aP2iJ LP52-IJL1 + eP2iJ 
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Figure 5. Variation of the Mach number of an incident shock wave as a 
function of the pressure ratio 
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Solving this quadratic results in the determination of two 

roots for P52» one of which is rejected for being less than 

unity. The other root is determined to be the following: 

_ (̂ 2)P2i - 1 (45) 

» + P2I 

Similarly, the density ratio associated with the reflected 

shock wave has the same functional form as Equation 29 and 

may be written: 

1 + 
r52 = a + P52 • (46) 

Substitution of Equation 45, and rearrangement, yields the 

following: 
(o+l)P,, 

. ̂ 52 = a-i + 2P21 • (47) 

Using the ideal gas law one obtains: 

By multiplying P52, P52) "̂ 52 2̂1, 2̂1» and T21, 

respectively, one obtains the following expressions: 

, (°̂ 2)P21̂  - ?21 (49) 

" + P2I 

rl + cP2i]r(«-l)P21 1  ̂  ̂

^51 ~L + FgiJLa-l + 2P21J' ^ 

and 
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(51) 
L 1 + aPoi JL Ca+l)P9i J 

•(W-2) F21̂ -f2l]r°'-l + 2-P2Ï 

+ &P2I J L (#4-1)P2I 

Equations 50 and 51 are plotted, for an ideal gas, in Figure 

6, while Equation 49 is demonstrated in Figure 7. For pur­

poses of calculation it is again much more convenient to write 

direct functions of the incident shock 

Mach number. By direct substitution of Equation 37 into Equa­

tions 49, 50, and 51, one finds 

• [" V • i] . 

rs. -r-̂ l . 
Le-1 + MÎ JL a - 2  + J 

(53) 

and 

[e-2 + 2Mî 3r(a+2)Mî  - 2 J . 
'51 = 

respectively. 

In many instances it is more convenient to make a meas­

urement of only the reflected shock wave velocity. By analogy 

with Equation 36, a study of the reflected shock in the rela­

tive coordinate system yields: 

Ur + 
) L 1 + a J 
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Figure 6. Variation of reflected shock temperature and density ratios as a 
function of the incident shock pressure ratio 
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By a simple rearrangement, the last equation is reduced to the 

form: 

S - "i. [-¥̂ 1 ' - 5 ̂ <"> 

The proper substitution of Equations 31, 39, and 45 converts 

Equation 56 into the following form: 

ÏS . 2F21+O'-1 ̂ ^ (57) 

ai r (I-KZ) (l+aP2l) 

Also, further substitution of Equation 37 yields: 

% = . (58) 
ai «Mj 

Equation 58 illustrates the simple connection that exists 

between the incident and reflected shocks in ideal systems. 

Note that for an ideal monatomic gas, for which e = 4, the 

reflected shock velocity is always lower than the incident 

shock velocity. This is true in laboratory coordinates, but 

one should keep in mind that the reflected shock wave is 

travelling into a moving gas. Its relative velocity is actu­

ally larger than that of the incident shock. 

There is one additional phenomenon in the shock tube that 

deserves elucidation. The quenching mechanism for a kinetics 

experiment is initiated by the interaction of the reflected 

shock wave with the contact surface, as illustrated in Figure 
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2. Since the generation of an expansion wave is not always 

the result of such an interaction, it is necessary to determine 

what special conditions will assure that one obtains a cooling 

wave. The coordinate systems of Figure 8 illustrate the con­

ditions existing prior to, and following, the interaction at 

the contact surface. For the derivation that follows the re­

flected far-end expansion wave is ignored, and the contact 

surface is taken at rest in the initial system. This shift in 

the coordinate system leaves the result completely general. 

The conditions across and through a rarefaction wave can be 

derived from the method of characteristics. The method is 

outlined in many texts (18,20,37) and is briefly introduced in 

the Appendix. Across the reflected rarefaction wave the 

velocities are related by the following equation: 

The velocities behind the initial and transmitted shock waves, 

by analogy with Equation 39, are given by the following rela­

tions: 

(59) 

a2(ei-l) (P52-I) 
(60) 

[ (1+̂ 1) (l-hy]̂ P̂ 2) 

23(̂ 4-1)(P73-I) 
(61) 

 ̂ [ (l-hŷ ) (I-HV4P73) 3"̂  
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Figure 8. Shock tube states before and after the 
refraction of a shock wave by a contact 
surface 
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Recall that the subscript 4 refers to the driver gas, which is 

also considered to be polytropic. Across the contact surface, 

before and after the interaction, the following boundary con­

ditions apply: 

P2 = P3, P7 = Pg, vy = vg. 

Thus, Equations 59, 60, and 61 may be equated to yield: 

ac 35 a3(o'4-l) (P32-I) a2 (0̂ 3̂ -1) (P32-I) 
L̂1-Pqs ] =:r——TT-—- . .1 ' T———-—r—Tzr 

Y505- ' r (1+0̂ 4) (l+tv4P82)J'̂  f (l+ô l) (1+̂ 1P52) 3"̂  

Rearrangement of this equation yields: 

(62) 

p ®5 ^5^5^32^25^"^4"^^ ^^82"^) ^ 
' [(1-̂ 74) (1-K̂ 4P82)]̂  r(l+ai)(l+aiP52)]̂  

One now substitutes for A25, using the functional form of 

Equation 31, to derive the following equation for P75: 

5̂ V535A32(l-HyiP52) (̂ 82"̂ ) 

7̂5 [P52 (""1+̂ 52) (l+<̂ 4) (1+*4P82)]̂  

Y5B5(O^1-1) (P52-I) _ ^ 
- x, — 0. (64) 

[ (1+̂ 1)(I+&2P52)]2 

The condition that an expansion wave be reflected is that P75 

< 1. Thus, the third term in Equation 64 must be larger than 

the fourth. This condition, after the appropriate cancella­

tions and rearrangement of Equation 64, yields: 
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Usually, the driver-gas in a shock tube is a monatomic gas 

such as helium, so the last two terms in the product above are 

close to unity. By approximation, the condition in Equation 

64 may be rewritten: 

 ̂  ̂. (66) 
Y4-I • Yl-1 

Looking back at Equation 25, one promptly sees that the simp­

lest way to ensure this condition is by adjustment of the 

molecular weights of the gases. Driver gases are normally 

hydrogen or helium, while reactants are diluted in argon or 

nitrogen. Nevertheless, the determination of the cooling 

effect is best done experimentally rather than simply resort­

ing to ideal theory. 

The equations derived in this section, though not of com­

putational value in kinetics experiments, give an excellent 

picture of shock tube phenomena. In general, the reactants in 

a shock tube are diluted with inert gas to the extent that 

these equations provide a reasonable first approximation to 

shock tube conditions. However, for the accurate determina­

tion of temperature that is mandatory in kinetics experiments, 

the equations of this section are not sufficient. 
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B. Application to Real Gases with Chemical Reaction 

The objective of this section is to outline the proper 

forms of the shock tube equations as applied to the isotopic 

exchange of iodine and methyl iodide. It is hoped that the 

technique demonstrated here may serve as a guide for the solu­

tion of more complex systems. The overriding simplification of 

the present problem is that the reactants and products are the 

same. Thus, there is no need to know the extent of reaction 

behind the incident or reflected shock waves since there is no 

heat of reaction and no change in number of moles. However, 

iodine dissociation is quite extensive behind the reflected 

shock wave and must be taken into consideration. 

For the system argon, iodine, and methyl iodide, the 

following relationships are simply derived from the ideal gas 

law, assuming no reaction behind the incident shock: 

Ml = XaMA + XriMRI + X12M12, (67) 

M2 = Ml, (68) 

X#A + XRIMRI + X12MI2 ,  ̂
M5 =  ̂, (69) 

1 + 0 XI2 

and 

P21 - M12 - ^21^21» (70) 

P52 = M25 r52T52 = (1 + 0̂ 12̂  ̂ 52̂ 52- (̂ 1) 
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Writing Equation 27 in a more convenient fashion one obtains 

2̂ - hi = i . (72) 
^ Pi 121 

Since Equation 28 does not apply, in general, one must obtain 

the enthalpies from standard tables or by use of appropriate 

partition functions. By substitution of Equations 23 and 70, 

Equation 72 becomes: 

1 ^̂ 1 r r Toi 1 
hz - hi = i (73) 

Multiplying the left side of this equation by the follow­

ing reduction occurs: 

(h2~h]̂ )Mĵ  = ̂ 22̂ 2 ~ ~ H2 -

= XAHA,2 + %IHri,2 + ̂ I2̂ l2,2 

- XaHA,1 - XriHRI,1 - Xl2Hl2,l 

= XA[(H''-H°)A,2 - (H-Ho)A,l] + 

- (H°-Ho)ri,1^ + XigECH -Ho)i2,2 " (H -Ho)l2,l^-

(74) 

This equation replaces the much simpler relation. Equation 28. 

The function is not adaptable to linear interpolation so 

the following rearrangement is made on Equation 73: 
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The enthalpy functions in Equation 75 are known to behave 

linearly with temperature and can be readily interpolated 

between the usual 100°C intervals of standard tabulations. 

Another simplification is introduced by making the following 

change in functional dependence: 

R \ T /  R \  1  /  

Equation 75 then becomes: 

P21 = T21/P2I 

For a given value of T2I Equation 76 is a simple quadratic in 

P21. The enthalpy functions are tabulated linear functions of 

temperature in 100°C intervals. 
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From Equation 33 we may immediately write: 

u/ = ' - "21 L El f_l2rJL_) . („) 
PI \1/ ̂ 21 - 1/ 1̂ - T21/P2I/ 

For a given value of T2I and U% Equation 77 is a simple quad­

ratic in P21' Equations 76 and 77 serve to uniquely determine 

the state behind the incident shock wave. Thus, one measures 

the incident shock velocity and allows T21 to vary until 

Equations 76 and 77 are in agreement. 

Using the reflected shock wave as a reference, one may 

write the conservation equations as follows: 

P2(UR+U2) = P5UR , (78) 

h2 + %(Ur+u2)̂  = h5 + , (79) 

P2 + P2(%'̂ 2)̂  = P5 + P5UR̂ - (80) 

By analogy with the derivation of Equation 76, taking into 

account dissociation, one obtains: 

P52 - (1+ 0Xi2)T52/P52 

" j  ( ^ ° ) - ' ] . „ r  ' ] i a . 2  

+ 
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The term AHq represents the enthalpy change at absolute zero 

for the dissociation of one mole of iodine molecules,. The 

one remaining equation necessary to complete the analysis is 

evolved in the following manner. Substitution of Equation 78 

into Equation 80 yields the following: 

• t; (l^)-i <"> 
Now, Ur can be related to U% by elimination of U2 from Equa­

tions 78 and 20. Thus, 

U2 = UR = ( r52"l)UR, (83) 
P2 

2̂ ' ̂1 
U2 = U% = (1-1/ r2l)̂ I • (84) 

Eliminating U2 from the last two equations: 

Substitution in Equation 82 yields the final relation: 

Ux̂ (l-1/ T2I)^ " 5̂2"̂ )- (BG) 

Rewritten using the ideal gas law, this becomes: 

UÎ (1-T2i/P2I)̂  = ̂  (P52-I) 1 1̂ - (1+0) ̂  j • (87) 
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Equations 81 and 87 serve to uniquely define the state of the 

gas behind the reflected wave from a knowledge of T2, P2, and 

the incident shock velocity. Since the degree of dissociation 

is itself a function of temperature and pressure the last 

equation must be solved by an iterative process. As before, 

Equations 81 and 87 are solved simultaneously by varying T52 

and solving the quadratics for P52- This technique of solu­

tion is rapidly handled by a digital computer. 
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IV. EXPERIMENTAL 

A. Chemicals 

Grade-A helium, used as the driver gas in the shock tube, 

was supplied by the Department of the Interior, Bureau of 

Mines. Argon, used as the diluent in the reactant section, 

was supplied by Air Products and Chemicals, Inc. Both gases 

had a minimum purity of 99.995% and were used without further 

purification. 

The methyl iodide used in the experiment was Baker's 

Analytical Reagent grade. The only treatment performed on 

the iodide was passage through a column of anhydrous silica 

gel. Harris and Willard (41) demonstrated that methyl iodide 

so treated yields the same infrared spectrum as that obtained 

after repeated fractional distillation. The methyl iodide 

was stored in a darkened flask with a strip of copper wire to 

prevent decomposition. 

131 I was procured from Cambridge Nuclear Corp. It was 

supplied as the aqueous iodide, carrier free, in basic solu­

tion. A predetermined amount of Baker's Analytical Reagent 

grade potassium iodide was dissolved in an aliquot of the 

active iodide solution. The solution was acidified with nitric 

acid until precipitation of the iodine was complete. The solid 
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was filtered and sublimed. 

B. Apparatus 

The shock tube built for the present experiment, similar 

to that used by Lifshitz, Bauer, and Resler (17), is illus­

trated in Figure 9. With the exception of the copper foil, 

all metal parts in contact with the interior of the shock tube 

were fabricated from stainless steel. Because of the low 

shock velocities in the experiments, the driver section was 

slightly longer than it would be for high temperature experi­

ments . The length of the driver section was made adjustable 

by placing a piston on the end of a threaded rod. The piston 

was machined to the point where its diameter allowed it to 

pass through the Pyrex tube without scratching it. Discussion 

of the tuning of the shock tube is found in the next section. 

The Pyrex pipe was obtained from Coming Glass Works, and is 

known as 'Double-Tough', No. 7740. The pipe is provided with 

tight fitting Teflon gaskets, which were used for all the 

glass-metal joints. The end of the driver section consisted 

of a short stainless steel cylinder. An outlet on the cylin­

der served for both evacuation of the driver section and the 

admission of helium. The plunger consisted of a stainless 

steel needle mounted on the bottom of a sealed bellows valve. 



www.manaraa.com

h—53 

i TO VACUUM T 1 ikir 
mylar 

diaphragm samp'le 
outlets 

teflon 
0-rin6s 

teflon 
0-ring copper 

foil n teflon 
-ff 0-ring pyrex 

tube 
pyrex tube 

rubber 
o-rings 

connector plunger BALL\ 
valve 

transducers 

dump tank 

235 cu. inch 

j to vacuum line 

Figure 9. The single-pulse chemical shock tube used for the CH3I-I2 exchange 
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The end of the driver section was recessed so that the con­

nector following it could be made to tightly enclose the dia­

phragm . The diaphragm was placed in the recess with a copper 

foil on top of it. The seal arose from the pressure of a 

Teflon 0-ring pressed against the copper foil. The connector, 

and the dump tank to which it was welded, were both of stain­

less steel. The bottom of the dump tank led through a cold 

trap to the vacuum line. Evacuation of the reactant section 

and removal of unreacted gases was performed through this 

line. The major portion of the reactant section consisted of 

a long section of Pyrex pipe. A short stainless steel con­

nector was added to adapt the flange on the Pyrex pipe to the 

screw holes drilled in the ball valve. The ball valve, 

obtained from Worcester Sprinkler Co., was one of the only 

valves manufactured with a uniform bore. The valve was closed 

immediately after the diaphragm burst to prevent the mixing of 

cold gases with the reacted gases. Figure 2 demonstrates that 

the gases remaining downstream of the ball valve have been at 

reaction temperature the longest. At the end of the reactant 

section the two transducers were located a fixed distance 

apart. Kistler Quartz Pressure Transducers, Model 601A, were 

each connected directly to Kistler Electrostatic Charge Ampli-
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fiers. Model 566. The amplifier outputs were connected in 

parallel and fed to the external triggering circuit of a 

Tektronix Oscilloscope, Type 535. The input was then led 

through a magnetic delay line, with a 6.5 ̂ sec.delay, to the 

vertical input of a Tektronix Preamp, Type K. The oscillo­

scope was provided with a raster sweep circuit, Tektronix 

Modification 118. This allowed a significant time expansion 

on the oscilloscope screen. A Tektronix Time Marker, Type 

181, was used to provide 10 |j.sec. time marks which were 

superimposed on the signal from the charge amplifiers. The 

oscilloscope was set for single sweep horizontal display and 

the raster, triggered by the incident shock, was photographed 

with a Tektronix Camera, Type C-12. Photographs of typical 

sweeps, both with and without a signal from the charge ampli­

fiers, are illustrated in Figure 10. It should be mentioned 

that signals caused by the natural frequencies of the trans­

ducers were removed in the most part by electronic filters. 

This filtering system caused the small oscillations appearing 

immediately after each shock pulse in Figure 10b. In addi­

tion, the timing switch circuits of the raster sweep genera­

tor were modified so that the sweep rates could be made con­

tinuously variable. As supplied from the factory, the raster 
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Figure 10a. Free running trace of the output of the raster 
sweep circuit 

Figure 10b. Same as above, with typical shock tube output 
from transducers and time marks superimposed 
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sweep modification allows only a fixed number of precali-

brated sweep rates. 

The sample outlets in the end section were connected to 

the vacuum line and sample bulbs, as illustrated in Figure 11. 

After addition of methyl iodide to the 25 ml. sample bulb, 

the large tank was evacuated to below one micron while the 

iodide was frozen at liquid nitrogen temperature. The iodide 

was then allowed to vaporize into the tank and its pressure 

was read on a Wallace and Tiernan Absolute Pressure Gauge, 

Model FA-160. Argon was then admitted to the tank to the 

desired pressure, as determined by a mercury manometer. The 

gases were allowed to further mix for a day. To begin each 

experiment a sample of solid iodine was weighed out in the 10 

ml. sample bulb. While the iodine was kept at liquid nitro­

gen temperature, the 3 1. mixing bulb and the 10 ml. sample 

bulb were evacuated through the sample outlets. The iodine 

was then sublimed into the large mixing bulb. The iodine 

pressure was calculated on the assumption that it obeyed the 

ideal gas law, the exact volume of the mixing bulb assembly 

having been previously determined. The 3 1. bulb and the 

driver section of the shock tube, including the dump tank, 

were heated to 335 + 2°K to ensure complete sublimation of 
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the iodine. The argon-methyl iodide mixture was then admitted 

to the mixing bulb and the total bulb pressure was measured 

indirectly, by use of a click gauge in line with a mercury 

manometer. The click gauge, a small bulb blown at the end of 

a short length of glass tubing, gives an audible and visible 

click at some constant pressure difference across the gauge 

face. The additional manometer on the mixing bulb was used 

for calibration of the click gauge. To prevent the deposit 

of solid iodine, the click gauge was maintained at the same 

elevated temperature as the shock tube. The principal reason 

for using this device was that no direct pressure reading 

instrument was found suitable for use with iodine vapor. 

After the gases were mixed they were admitted to the shock 

tube and the pressure again determined with the click gauge. 

After an experiment the products were pumped into the remov­

able liquid N2 cooled trap. 

After separation of the reactants, their Y-ray activity 

was determined on a Radiation Instrument Development Labora­

tory 400 Channel Analyzer, Model 34-12B. The technique 

effectively indicated the fraction of exchange for each 

experiment. 
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C. Procedures 

Before performing any kinetics experiments in the shock 

tube it was necessary to tune the instrument for the combin­

ation of the helium driver and heated argon driven section. 

By tuning of the shock tube is meant the arrangement of the 

length of the tube such that the reflected far-end expansion 

wave and the reflected shock wave meet at the contact surface. 

This phenomenon was discussed in Section II-A. The tuning is 

accomplished by operating the shock tube under the conditions 

of the kinetics experiment to be studied. A photograph of 

the oscilloscope trace of such an experiment, without raster 

sweep, is shown in Figure 12a. The hump in the cooling curve 

indicates the late arrival of the reflected far-end expansion 

wave. Figure 12b demonstrates the sharp cooling curve brought 

about by tuning the shock tube. 

The preparation of the reactant gas sample was discussed 

in the previous section. Before the reactants were admitted 

into the shock tube, a Mylar diaphragm was inserted in place, 

and the driver and reactant sections were evacuated, the 

latter to below 10"̂  torr pressure. The driver section was 

filled to the desired pressure with helium, and the diaphragm 

was then punctured with the plunger. The ball valve was 
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(a) 

Figure 12. 

(b) 

Successive photographs taken before and after 
tuning the driver section of the shock tube 
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immediately closed to separate the reacted gases from the 

cold portion of the shock tube. The photograph of the oscil­

loscope screen was developed in the next few seconds from the 

Polaroid back on the oscilloscope camera. The reactants were 

then pumped out of the shock tube and collected in a liquid 

N2 cooled trap. They were diluted with acetone and shaken 

with a small drop of mercury until the reduction of iodine 

was completed. A hot water bath was sufficient to distill 

the organic products and leave the inorganic iodide behind. 

The samples were counted in plastic vials, the organic mater­

ials made up to volume with acetone, the inorganic iodide 

made up to volume with a 10% sodium iodide solution. 

The counting of the products was performed by counting 

the 46 channels that contained the main Y-ray peak at 0.3645 

Mev. The error in counting is given by the standard relation: 

where c is the total number of counts. To reduce the error, 

at least 10,000 counts were accumulated for each sample. The 

fraction of exchange, F, is given by the simple formula: 

(88) 
c 

XRI + 2X12 
Xri 

( 8 9 )  
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where: CR% = counts from methyl iodide sample; 

c%2 ~ counts from inorganic iodide sample. 

A complete error analysis of the shock tube experiment 

will not be attempted here. For the temperature range of 

interest in this study many investigators have shown the 

uncertainty in temperature to be of the order of 1-2%. Other 

errors in the determination will be treated as they become 

apparent. 
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V. CALCULATIONS 

A. Determination of Reaction Parameters 

For any given experiment, the laboratory velocity of the 

incident shock wave, along with the initial conditions, pro­

vided sufficient information for the solution of Equations 76, 

77, 81, and 87. The algebra and iterations were performed on 

an IBM 360/65 digital computer. Before discussing the compu­

tational methods, it is necessary to outline some of the 

assumptions contained therein. 

The various thermodynamic functions for argon, iodine, 

and iodine atoms are tabulated in the JANAF Thermochemical 

Tables (42). However, no tabulations are available for methyl 

iodide. Since the concentration of methyl iodide in the 

experiments was small, it was felt that calculation of enthal­

pies and heat capacities from classical partition functions, 

without the use of any anharmonicity corrections, would intro­

duce negligible error into the result. Fundamental vibra­

tional frequencies of methyl iodide were found in Sponer (43), 

and are given in Table 1. The enthalpy function, (H-H q/T), 

and "the heat capacity, 0°, were calculated from the following 

formulas, which are found in Lewis and Randall (44, Chapter 

27): 
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Table 1. Fundamental frequencies of methyl iodide 

Fundamental frequency Degeneracy 
cm. "1 

3074 2 
1445 2 

885 2 
2916 1 
1252 1 

532 1 

where: h is Planck's constant; 

c is the speed of light; 

k is Boltzmann's constant; 

is fundamental frequency in cm.~̂ . 

The heat capacities calculated here are in agreement with the 

low temperature heat capacities calculated by Edgell and 

Glockler (45). Values of the functions /T and 

2(H°-H q)/RT- 1 are tabulated in Table 2 for Ar, 12» 1 and 

CH3I over the temperatures of interest in this experiment. 

Heat capacities are tabulated in Table 3 and are used in the 

following section. Both enthalpy functions of Table 2 are 
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Table 2. Enthalpy functions of Aj-, I2, 1, and CH3I 

Temperature  ̂"̂ o 2. ( -
Ok "T— R \ T 

cal./mole-deg 

Aj. 12 I CH3I Aj. Ig I CHgl 

335 4.968 8.181 4.968 8.900 4.000 7.233 4.000 7.957 
400 8.301 9.371 7.354 8.431 
500 8.426 10.12 7.480 9.185 
600 8.516 10.87 7.571 9.940 
700 8.584 11.58 7.639 10.65 
800 8 . 6 3 8  12.25 7.693 11.33 
900 8.682 12.88 7.738 11.96 
1000 8.719 13.47 7.775 12.56 
1100 8.750 4.969 14.02 7.806 13.11 
1200 8 . 7 7 8  4.969 14.53 7.834 4.001 13.62 
1300 8.803 4.970 15.01 7.859 4.002 14.11 
1400 8.285 4.971 15.45 7.881 4.003 14.55 
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Table 3. Heat capacities of Â , I2, I, and CH3I 

Temperature cal./mole-deg 
OK Ar I2 I CH3I 

1000 4.968 9.06 4.970 19.15 
1100 9.08 4.973 19.85 
1200 9.09 4.977 20.47 
1300 9.11 4.984 21.00 
1400 9.12 4.993 21.48 

approximately linear over any hundred degree interval, so 

enthalpies for intermediate temperatures are extracted by 

linear interpolation. The JANAF (42) workers have also tabu­

lated values for the formation constant of iodine. However, 

this constant changes rapidly with temperature and is not 

susceptible to linear interpolation. Thus, it was decided 

to develop an equilibrium function, K(T), as an explicit 

function of temperature. Lewis and Randall (44, p. 66) have 

evaluated the function Cp(T) for iodine, from the data of 

Wagman and Evans (46), in the following manner: 

Cp,I = 4.97, (92) 

Cp,l2 = 8.94 + 0.14X10"3T - O.iyxlÔ T"̂ . (93) 

One may now write: 

Al̂  = AHi + J ACp dT 

= AHi + r[l-00-0.14xl0"3i+0.17xl0%'̂ ]dT, (94) 
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where: AHt is the enthalpy change at temperature T for 

the formation of two iodine atoms from iodine; 

is an integration constant. 

Using the value of Â ogs given by Lewis and Randall (44, p. 

672), the result of the integration above is: 

AHt = 35880 + l.OOT - 0.07xl0"̂ T̂  - 0.17xl0̂ T'̂ . (95) 

The van't Hoff equation relates the enthalpy change to the 

equilibrium constant as follows: 

dT 2.303 RT2 

where Kp is the equilibrium constant expressed in units of 

atmospheres. Integrating Equation 96, one obtains: 

log Kt = I - 7844T"̂  + 0.2186 In T - 1.53xlO'̂ T + ISSST'̂ , 
(97) 

where I represents the integration constant for the indefinite 

integral. Evaluation of the equilibrium constant at 600°K 

gives a value for I of 3.849, based on the tabulated equi­

librium constants of the JANAF tables (42). Thus, the final 

form for Rp is: 

log KM = 3.824- 7844T-1+0.2186 In T - 1.53X10~5T+ 1858T'2. 
(98) 

This function is in excellent agreement with the values of 

the JANAF tabulations over the temperature range of interest. 
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The degree of dissociation of iodine is a function of 

temperature and also of pressure, because of the change in 

mole number. The equilibrium constant may be written as 

follows: 

where P is the total pressure of the system. One may now 

solve the quadratic for 0.J. p, retaining the positive root 

Thus, one may determine the equilibrium constant at any tem­

perature by Equation 98. Then, by Equation 100, the degree 

of dissociation is determined at that same temperature and 

any given total pressure. 

Solution of the shock tube equations was outlined in 

Section III-B. Equations 76, 77, 81, and 87 were readily 

solved using the tabulated thermodynamic data for the reac-

tants. The dissociation energy, /\H°, was taken as 35,560 

cal./mole (42). The incident shock wave velocity was calcu­

lated from the photograph in Figure 10b. The elapsed time 

between the first two pressure pulses and the distance separ-

K = (20r,pXi2P)̂  = 40̂ ,pXl2P  ̂

 ̂(Pig) (l-0T,p)Xl2P 1-0T,P 
(99) 

only, and one obtains: 

(100) 
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ating the transducers gave the incident shock velocity to 

within 2%. 

The dissociation of iodine behind the incident shock 

•wave was considered negligible. At incident shock tempera­

tures the equilibrium constant for the dissociation is approx­

imately 10 ̂  atmo. Behind the reflected shock the iodine was 

considered at equilibrium with dissociated iodine atoms. This 

assumption is based on the shock tube work of Britton et al. 

(47,48), who studied the three-body association of iodine 

atoms diluted in argon. In simplified form, the recombina­

tion rate may be written: 

From the equilibrium constant the second order rate constant 

for dissociation is found to be: 

where U = 35,560 cal./mole. Thus, the rate of production of 

iodine atoms is given by the following differential equation: 

(101) 

\ mole-sec 
(102) 

AOl = 2kD(A) (Ig) - 2k%(A)(I)2, (103) 

where parentheses designate concentrations in units of 

mole/cc. The solution may be written: 



www.manaraa.com

72 

G-K 1 - exp [-Gko (A) t ] 
(I) — , (104) 

4 1 + exp[-Gk%(A)t] 

where, K represents the equilibrium constant, ko/lcR, and 

ry ^ 
G = [K + 16K(I2)̂ _q] F o r  a l l  t h e  e x p e r i m e n t s  p e r f o r m e d  

on the exchange the equilibrium was effectively established 

in no more than 15% of the total reaction time. Thus, the 

final state behind the reflected shock wave is certainly well 

represented by the assumption of dissociation equilibrium. 

However, since the dissociation does occur over a substantial 

time interval, it is necessary to consider its rate in con­

junction with any kinetic scheme for the exchange. 

The steady state concentration of methyl radicals was 

considered low enough to be left out of the enthalpy equations 

Mass spectra of shocked CH3I samples indicated no unexpected 

concentrations of side products. Also, using estimates of 

29-5 e.u. for the decomposition of methyl iodide and the bond 

energy of about 55 kcal. resulted in the expectation of low 

steady state concentrations. 

B. Treatment of Isotopic Exchange 

The lone parameter necessary to complete the analysis of 

the isotopic exchange is the reaction time. As before, this 
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variable is indirectly determined from the oscilloscope pat­

tern for each experiment. Figure 13 contains an enlargement 

of the reaction zone corresponding to region 5 in Figure 2. 

The gases of interest are those downstream of the ball valve 

which are removed for analysis. The time interval tĝ g is 

measured from Figure 10b as the elapsed time between the sec­

ond reflected shock pulse and the start of the cooling curve. 

Since the kinetics of the exchange reaction is complex, it is 

simpler to obtain a single time average over the reaction zone 

than to average the extent of reaction over the same zone. 

One may simply apply the following linear approximation: 

tav = tobs •̂ 1 (105) 

where: X q  is the distance to the midpoint of the reaction 

zone; 

U5 is the velocity of the reflected shock wave; 

â  is the velocity of the expansion wave head. 

The velocity U5 is contained in Figure 10b as the time between 

the last two pressure pulses. The velocity of the expansion 

wave is the speed of sound in the reaction zone and this is 

simply determined from the equilibrium state behind the re­

flected shock. The above approximation causes a very slight 

underestimate of the reaction time. Coupled with the fact 
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Figure 13. Enlargement of the reaction zone in the shock tube, 
represented in x-t space 
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that the reaction zone expands behind the cooling fan, a cor­

rection to the simplistic time average would seem in order. 

Lifshitz et (17) have shown that in some cases the correc­

tion to tĝ  may be as large as 10%. A crude analysis of 

region 8 in Figure 2, for some typical exchange experiments, 

indicated that 5% was a valid estimate for the present case. 

Since the reaction time can be evaluated to certainly no 

better than 5% from Figure 10b, this correction is question­

able. 

Although the cooling process is rapid, it may often 

develop that reaction occurring during the quenching phase is 

considerable. Thus, for reactions with low activation ener­

gies, a positive error in the rate constant would be caused 

by neglecting the cooling time. In the present case the acti­

vation energies were fairly high, the cooling rates were 

approximately 3.5-4 x 10̂  °K/sec., and the reaction times 

were long enough to make this contribution to the reaction 

time of the order of a few percent. Because of the inherent 

error of at least 25% in the determination of the rate con­

stant, this contribution may normally be neglected. 

The isotopic exchange reaction can be described by the 

standard statistical treatment. The mechanism that was found 
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to explain the exchange is as follows: 

d 
M + lo - 21 + M, 

r 

1 
I + CH3I ̂  CH3 + I2, 

where M is the inert third body argon. 

Let: U = concentration of active I atoms, 

V = concentration of active CH3I molecules, 

A = initial concentration of active I atoms in I2, 

X = total concentration of I2 molecules, 

y = total concentration of I atoms, 

z = total concentration of CH3I molecules. 

The rate of formation of active I atoms is given by the fol­

lowing differential equation: 

in = kiyz r A-U-V - Ul + 2kdM AzUzY _ 2krMŷ  12 . (106) 
dt L 2x yj 2x y 

In this equation it must be kept in mind that x and y are 

functions of time as well as U and V. The concentration of 

iodine atoms is explicitly given by Equation 104 and the con­

centration of I2 molecules decreases at half this rate. Equa­

tion 106 also contains the assumption that the rate determin­

ing step reaches equilibrium very rapidly. This approximation 

is justified in view of the values of ki and k_2 as determined 

by Flowers and Benson (9). Their study indicates the steady 
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state concentration of methyl radicals is established in times 

short compared to the time necessary for complete I2 dissocia­

tion. Equation 106 may be rearranged to give the following 

functional dependence: 

#=-[4r + kiZ4-kdM+2k^]n 

- + kcfl] V + + kdnj A. (107) 

This equation can be converted into a slightly altered form by 

converting the concentrations of the active species to specif­

ic activities. Thus, 

V/z = SCH3I' 

U/(I)eq = S i-

Equation 107 now becomes: 

d̂  = _ + kiz + kjN + 2k3cMyJ Sj 

(I)gq may be determined from Equation 104 by letting t - 00 . 

Equation 108 still contains unmeasurable quantities and is 

finally converted by dividing by the equilibrium specific 

activity. A/(2x + y + z). The following equation finally 

obtains : 
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dFi f kjyz 1 
ârr " +kdM + 2k^yJ Fi 

The rate of formation of active CH3I molecules is more simply 

given by the following: 

g = kiyz - 1] . (110) 

In terms of fraction of exchange Equation 110 may be rewritten: 

 ̂- It («.,'1 - [4r ' 4 •">' 

+ kiy . , (111) 

Equations 109 and 111 are simultaneous linear differential 

equations in Fqĥ I and Fj which cannot be solved explicitly 

because of the time dependence of the variables x and y. How­

ever, FCH3I can be evaluated as a function of time by numeri­

cal integration using the Runge-Kutta method (49). Given two 

simultaneous differential equations: 

= f(t,x,y), 

 ̂= g(t,x,y), 
dt 

values of x and y are determined by the following procedure: 
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7 9  

k l  =  f(to,xo,yo) At y 

k 2  =  f(to + 2 ' *0 
•̂ 1 . 

yo + -y) At, 

^ 3  =  f  (to + Xo yo + At, 

k4 = f(to + At, Xq + kg, Yo + ̂ 3) At, 

X = -|(ki + 2k2 + 2k3 + k̂ ), 

= g(to, xo, yo)At, 

2̂ = g(Co + Xo + ̂ , yo + ̂  )At, 

. , At ko 4? 
3̂ = S(to + xo + ̂ , yo + -f ) At, 

4̂ = S(to + At, xo + kg, yo + ̂ 3) At, 

y = ̂ (̂ 1 2'&2 + 2̂ 3 + ̂ 4) . 

By proceeding through to obtain values of Ax and Ay for 

given At and then iterating the new values of x, y, and t it 

is possible to determine x and y at any time with an inherent 

error of (At)̂ . 
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VI. RESULTS AND DISCUSSION 

The results of a series of isotopic exchange reactions 

in the shock tube are tabulated in Table 4. Column 2 contains 

the initial pressure of gases in the reactant section. 

Columns 3 and 4 list the concentrations of I2 and CH3I in 

argon. Reaction temperatures are tabulated in column 5. In 

column 8 the shock density ratio for each experiment is tabu­

lated. This parameter is useful for evaluating the concentra­

tions of the reactants at reaction conditions. Column 7 con­

tains the fraction of exchange observed in each experiment. 

Column 9 lists the recorded incident shock speeds. 

Column 6 lists the effective dwell times calculated by 

Equation 105 and corrected as discussed in Section V-B. These 

times are exceptionally long compared to other shock tube work 

in a comparable temperature range. This effect is caused 

principally by the preheating of the driven section of the 

shock tube. It is also the cause of the slightly lower cool­

ing rates than previously observed. Thus, room temperature 

experiments result in the temperature jumps being greater than 

in the present experiments. Correspondingly, the shock waves 

in the present experiment appear to be travelling slower than 

would be expected and the resulting reaction times are greatly 
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Table 4. Details of the CH3I -I2 isotopic exchange experiments 

l 2  CH3I Dwell Compres­ Log ki Inc. 
Exp. PI conc conc. T5 time Fraction sion ratio cc-mole" shock 

mm-Hg mole % mole % °K usee exchange P5/PI sec"l speed P5/PI 
10-4 X 
cm/sec. 

1 220 .209 2.85 954 2]00 . 4 9 2  4.15 9.23 5.91 
2 224 .299 2.85 929 2110 .474 4 . 0 5  9.35 5.81 
3 187 .208 2.85 997 1460 . 4 6 6  4.34 9.27 6.08 
4 239 .242 2.16 870 2160 .117 3.69 9.02 5.61 
5 235 .185 2.15 893 2075 .152 3 . 7 8  9.00 5.71 
6 235 .112 2.15 917 2095 . 2 6 2  3.88 9.10 5.81 
7 215 . 2 3 3  2.15 934 1855 .155 3.96 8.90 5.86 
8 197 .302 2.15 949 1580 .187 4 . 0 5  9.04 5.91 
9 236 .166 3.15 8 8 9  2160 .198 3.89 8.97 5.66 
10 237 .290 3.15 905 2140 .175 3.98 8.90 5.71 
11 2 2 8  .172 3.15 915 0.825 .237 4.02 9.01 , 5.76 
12 235 .195 3.15 877 2180 .135 3.84 8 . 8 2  .  5.61 
13 136 . 3 1 2  3.15 1079 1100 .748 4.76 9.56 6.38 
14 165 .308 3.15 1032 1375 .740 4.56 9.51 6.20 
15 158 .369 1.94 1105 1480 .787 4.66 9.53 6.50 
16 188 .181 1.94 1035 1570 . 666 4.35 9.46 6.25 
17 193 .186 1.94 989 1720 .496 4.15 9.37 6.09 
18 195 .198 1.94 974 1745 .528 4.10 9.45 6.03 
19 197 .236 1.94 1036 1610 .745 4.35 9.53 6.25 
2 0  198 .256 1.94 1005 1790 .622 4.24 9.44 6.14 
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extended. Problems this effect might cause are discussed 

shortly. 

The data of Table 4 are almost impossible to use to 

determine the individual reaction orders of the reactants. 

This difficulty arises because the iodine, introduced as a 

solid, could not be greatly varied in concentration. The 

radiation hazard and the low vapor pressure of iodine pre­

vented the use of large concentrations. On the other hand, 

since the iodine sample had to be weighed analytically, there 

was a lower limit on the amount that could be used. Also, the 

reflected shock technique does not allow the same variation 

of conditions that would be possible with an incident shock 

alone. This arises from the rule that, in general, it is not 

possible to bring a gas to a state with a single shock that 

would be produced by the passage of two shocks. 

Thus, the data is best analyzed by comparison with 

suggested mechanisms. For example, the data could be treated 

by the mechanism suggested by Schmied and Fink (11): 

I-I* + CH3I - CH3I* + I-I, 

k / \̂ = 2.5x10̂  exp(-9000/RT). (112) 
I mole-sec I 

However, this mechanism was found to predominate at tempera­

tures approximately 600°K lower than those studied herein. 
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One certainly would not expect a mechanism of such low acti­

vation energy to predominate at 900°K. The treatment of the 

data gave absolutely no agreement with Equation 112. Although 

the data did not display bad scatter for this mechanism, the 

temperature dependence was large and the pre-exponential 

factor was several orders of magnitude larger than could be 

expected from simple collision theory. 

Another possibility appeared to be the bimolecular 

decomposition of methyl iodide: 

M + CH3I - M + CH3 + I. 

This mechanism was ruled out for several reasons. Primarily, 

the consistency of the data was very poor. Secondly, using 

the approximate bond energy of the C-I bond, 55 kcal., for the 

activation energy again resulted in a pre-exponential factor 

much larger than could be expected from collision theory. 

Since, in general, the fractions of exchange were lower than 

expected, it is unlikely that this higher activation energy 

process is contributing significantly. 

A third mechanism, a combination of the results of 

Flowers and Benson (9) and Britton ̂  (47,48), is re­

peated here: 
d 

M + I? = M + 21, 
r 
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I + CH3I ̂  CH3 + I2 

k. ( ÇÇ \ = 1.4xlO^°(T)^/l^^Y'^\xp&15560 \ (113) 
\mole-sec / \ RT J \ RT J 

 ̂/__ççl_\ 1014.87/ 1000 y 9  ̂ (114) 

\molê -sec/ \  ̂ / 

k2 cc ,]= 10^2.9 ej^p/_ ̂ \ (116) 
 ̂ mole-sec / y RT y 

Using the numerical integration procedure outlined in the last 

section, values of were found for each experiment and they 

are tabulated in column 8 of Table 4. These values are 

plotted in Figure 14 along with the solid line representing 

Equation 115, found by Flowers and Benson, and its extrapola­

tion to high temperatures. The points are in close agreement 

with Equation 115 although they generally give a lower value 

of k̂ . Flowers and Benson suggested that the values given in 

Equation 115 represented an upper limit and that the pre-

exponential factor was slightly in excess of collision fre­

quencies. The overall error involved in the present experi­

mental determination of k̂  is probably of the order of 25-35%. 

Thus, the difference noted in Figure 14 is probably slightly 
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Figure 14. Arrhenius plot for the CH3I-I2 exchange. Open 
circles from present work. Dotted line repre­
sents extrapolation from Flowers and Benson (9), 
their results denoted by closed circles 
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exaggerated. However, the values determined from the shock 

tube experiment are consistently low and deserve explanation. 

In most shock tube work cooling at the walls is not considered 

important to consider. Reaction times are short and one may 

expect rather small temperature and pressure effects. Also, 

tube diameters, when possible, are large such that surface to 

volume ratios are small. Heat conduction is thus confined to 

a thin layer of gas at the surface and hence confined to a 

small volume of gas. In the present case the tube diameter 

was only 2.54 cm. and contact times were never below a milli­

second. An in depth analysis is pointless since heat conduc­

tion in a system such as a shock tube is a poorly developed 

subject. It is not inconceivable that the gas temperature 

drops 20-25°K during the contact times in the present experi­

ments. Thus, it must be concluded that the pre-exponential 

factor for the rate determining for the exchange would be in 

the range 10̂ "̂̂ -10̂ *̂The activation energy is in close 

agreement with the 20 kcal. found by Flowers and Benson. 

It is at once apparent that the same results would be 

obtained if the rate determining step were chosen to be the 

3̂ 2 inversion suggested by Clark et aX, (6). Although it is 

impossible to directly distinguish between these two mechan­
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isms, several experiments have recently shown that iodine 

replacement reactions depend on the establishment of iodine 

equilibrium succeeded by the formation of free radical inter 

mediates. Several of these cases are tabulated in Table 5. 

Table 5. Iodine reactions with free radical intermediates 

Overall reaction Mechanism Reference 

HI + CH3I - I2 + CH4 l2 21 9 

I + CH3I CH3 + I2 

HI + CH3 CH4 + I 

I2 + CH4 - HI + CH3I I2 21 50 

I + CH4 CH3 + HI 

I2 + CH3 CH3I + I 

l2 + CF3H = HI + CF3I I2 21 51 

I + CF3H CF3 + HI 

12 + CF3 CF3I + I 

In conclusion, it can definitely be stated that the high 

temperature CH3I-I2 homogeneous exchange was observed in the 

absence of surface reaction. It would be expected that at 

higher temperatures than those studied here the decomposition 

of methyl iodide would itself become the predominant route 
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for the exchange. This might be a singular method for study­

ing the decomposition without extensive formation of organic 

side products. Once again, surface reactions that are common­

place with the alkyl iodides would be eliminated in the shock 

tube. Any contribution to the literature of bond energies or 

mechanisms for decomposition of the lower alkyl iodides would 

be a welcome addition. 
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VII. SUMMARY 

The shock tube study of the isotopic exchange reaction 

I-I* + CH3I ;= CH3I* + I-I 

was found consistent with a rate determining step first order 

in methyl iodide concentration and first order in iodine atom 

concentration. This step was preceded by the rapid dissocia­

tion of molecular iodine. The rate constant for the exchange 

step was found to be: 

This value is slightly below what might be expected from 

collision theory and a value of 14.1-14.2 is preferred for 

the Arrhenius factor. The exchange is believed to proceed by 

formation of methyl radicals rather than the 8̂ 2 inversion of 

methyl iodide. 

The isotopic exchange was homogeneous and uncomplicated 

by surface reaction frequently observed in iodine systems. 

Methyl iodide decomposition was not a contributing factor in 

the temperature and time range of the present study. Simi­

larly, bimolecular collisions between molecular iodine and 

methyl iodide was ruled out as a possible exchange mechanism 

on the basis of theoretical collision frequencies. 
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X. APPENDIX 

The method of characteristics, or Riemann invariants, is 

a useful subject in the study of any fluid flow. The tech­

nique is a result of the basic laws of fluid motion. To begin, 

one must define the following function: 

f(p) — r a ̂  • (A-1) 

As a consequence of the definition, the following results may 

be written: 

M = â |£ , (A-2) 
Bx a hx 

and 

I f  =  7 ! ^ '  ( ^ - 3 )  

 ̂= a2 l£ = pa M . (A-4) 
5x 9x Bx 

Applying these results to Equation 1, rewritten for one-

dimensional flow, and multiplying by a/p, one finds: 

lf + a|H + uM=0. (A-5) 
9t ÔX 3x 

Similarly, Equation 4 yields: 

If one now takes the two possible linear combinations pf_ 

Equations A-5 and A-6, the following equation obtains: 

(f + u) + (u + a) (f + u) = 0. (A-7) 
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The Riemann invariants, f + u, are constants along curves in 

x-t space with slopes u + a. The curves along which the in­

variants are constant are referred to as characteristics. P 

and Q are symbolically used to denote the invariants f + u and 

f - u, respectively. Using Equation 25, Equation A-1 is 

exactly integrable, and taking the reference density to be 

zero one finds; 

Now, consider the left-facing rarefaction wave of Figure 

15. The wave travels into a region which is initially at rest. 

The value of the invariant P is constant, although the char­

acteristic curve slopes through the rarefaction wave. The 

following condition may be written: 

at any point in the rarefaction wave, on the line of slope 

u + a. Thus, one may write: 

, = (A-io 
Y -1 Y- 1 yB 

A rarefaction wave, like any small perturbation in a fluid, 

causes an adiabatic transition. As a result, one may write: 

(A-8) 

(A-9) 

(A-11) 
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t 

Figure 15. Left-facing rarefaction wave represented in 
x-t space 
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Equation A-10 then takes the final form: 

Several important properties of the fluid motion may be 

extracted from Equation A-12. Since the pressure ratio p/p̂  

is less than unity at any point in the wave. Equation A-12 

indicates the fluid flow is in the direction opposite from 

that of the wave motion. Also, since weak disturbances prop­

agate at the speed of sound, the head of the rarefaction wave 

travels at the sound speed of gas 1 while the tail travels at 

the sound speed of gas 4. Thus, one sees that an expansion 

wave fans out with time. An analysis of u + a througjh the 

wave would give the slopes of the P and Q lines as demon­

strated in Figure 15. 

If one performs the same analysis on a left-facing com­

pression wave. Equation A-12 would again be the result. How­

ever, p/px would always be larger than unity and fluid flow 

would thus be in the same direction as the wave motion. The 

P line would curve through the compression wave, but in the 

opposite direction of Figure 15. Also, the Q lines would be 

found to be convergent. In fact, at the point at which they 
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converge, a shock front would be formed. This sequence of 

events closely approximates the nonideal formation of a shock 

wave by a bursting diaphragm. 
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